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Hardware Acceleration Platforms

= 103 - 10° speedup over CPU required to achieve real-time
learning, e.g. feature extraction for an HD image at 30
frames/second

GPU FPGA CMOS ASIC Beyond CMOS
10-30 X 10-30 X 102 =103 X >103 X

= Solution: beyond CMOS with emerging non-volatile memory

— Maximizing the parallel operation in hardware

— Our goal: improving computing speed and energy-efficiency. Do not
strictly follow the biological principles, such as spike-timing dependent
plasticity (STDP)




Cross-point Architecture for Accelerating
Weighted Sum and Weight Update

= Direct mapping weight matrix in neuro-algorithms on crossbar array
= All cells are used in parallel, no sneak path problem for read.

= Selectors needed for minimizing write power if not fully parallel write
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Resistive Devices for Offline and Online Training
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- Offline training: weights are pre-defined by software training, just
need one-time loading to the array-> Conventional RRAM with
gradual reset only is good enough

« Online training: weights are updated during run-time-> Special
RRAM with both smooth set and reset is needed




Realistic Device’'s Weight Update Behaviors
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« Nonlinearity in weight update
* Device variations
°

Non-zero off-state conductance

How would these non-ideal effects impact learning accuracy?

S. Yu, et al, “Scaling-up resistive synaptic arrays for neuro-inspired
architecture: challenges and prospect,” IEDM 2015



Algorithm level

Parameters:

Network size, learning
rate, thresholding
value, etc.

Input layer
Key operations:

- Feed forward
(weighted sum)

- Back propagation
(weight update)

Hidden
layer

— True crossbar Array
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n SRAM cells as a synapse

Digital RRAM

Analog RRAM

Device parameters:

- Cell height and width

- Maximum and minimum
conductance

- Read/write voltage and
pulse width

Non-ideal properties:

- Nonlinear weight update
with  finite  number of
states

[\

# pulse

- Variations (Device-to-
device and cycle-to-cycle

Conductance

L_|weight update variation,
and read noise)

SRAM device model

SRAM

Device parameters:

- Cell height and width

- Transistor width

- Sensing voltage

- Read/write latency and

energy

Input:

* Network
structure,

« Training/testing
traces

« Array type and
technology node

« Device type and
non-ideal factors

Output:

* Area,

« Latency,
* Energy,

« Accuracy
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Weight Precision and Weight
Update Nonlinearity
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At least 6-bit is required for online learning, while 1 or 2-bit may work for offline
classification. Nonlinearity significantly degrades accuracy for online learning.
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Ternary Neural Network (TNN): Precision Reduction to
Ternary Weight (+1,0,-1) for Feedforward

To allow the conventional digital (1-bit) RRAM work as binary synapse
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Impact of RRAM Finite Yield and Endurance
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For MNIST dataset, 99% bit yield and 1E4 cycling endurance is sufficient



* Resistive devices can be tuned to the targeted multilevel
(possibly by iterative programming), and offline classification is
most suitable application scenario that achieves both low-power,
fast and accurate recognition.

= For online training, “analog” synapses with continuous weights
need to overcome challenges such as nonlinear weight update,
and further improve on/off ratio and programming speed

= Digitalizing neural network with low-precision weights (e.g.
ternary +1, 0, -1), allows today’s “digital” RRAM arrays for online
training and offline classification with high accuracy, which also
shows good resilience to limited yield and endurance.




